
The DEMO Specification Language v4.6.1
Jan L.G. Dietz

jan.dietz@sapio.nl,

Abstract. Conceptual models must be expressed in a suitable language in order
to communicate them. To avoid misunderstandings, this language should allow
for formulating clear, unambiguous expressions. First order logic is a language
that has all the properties one needs and wants, but it has the drawback that its
common Peano-Russell notation puts off people who lack a background in logic
and mathematics. The DEMO Specification Language (DEMOSL) offers a
user-friendly look, although it is firmly based on first order logic. One produces
precise formulations that resemble English sentences. The syntax of DEMOSL
is defined in the so-called Extended Backus-Naur Form (EBNF). In addition to
(formal) textual expressions, it allows for (formal) graphical representations.
Except for the Action Model, one can represent the DEMO aspect models in
diagrams. DEMOSL comprises specific diagrams for each of the other models:
the Cooperation Model, the Process Model and the Fact Model. The diagrams
are kept simple, which means that what cannot be expressed in a diagram, must
be expressed in (formal) text. In addition to the explanation and illustration of
DEMOSL, the meta model or schema of each of the four aspect models is
presented and discussed, as well as of each of the kinds of diagrams and tables.
They are also expressed in DEMOSL.

The DEMO Specification Language v4.6.12

1 Introduction
In this document, the formal language is presented in which the ontological models of
DEMO (Design and Engineering Methodology for Organisations) are expressed. The 1

language is called DEMO Specification Language, or DEMOSL for short. The dis-
tinction between models on the one side and the diagrams, tables and (formalised)
texts in which they are expressed on the other side, is crucial (cf. MU theory in [1]):
they constitute respectively the semantics and syntax of the language DEMOSL.

Expressions in DEMOSL are basically formal textual expressions in first order
logic [2]. A large part of these textual expressions have also a graphical or tabular
equivalent, because the appreciation of formal text in current practice is generally
low, particularly by people without a logical/mathematical background. Consequently,
the diagrams should be understood as graphical representations that are univocally
transformable to (formal) texts and vice versa. The same holds for tabular expres-
sions. They are only syntactic alternatives to represent the same semantics as formal
texts. In spite of the current preference for diagrams to formal text, there are limits to
the expressive power of diagrams: they can easily become impractical if one has to
remember (too) many shapes, symbols and constructs. Therefore, the diagrams in
DEMOSL are kept simple; they have a limited set of shapes, symbols and constructs.
What cannot be expressed in a diagram, must be expressed in a formal text.

In Sec. 2 the basics of DEMOSL are presented: the definition of terms, the declara-
tion and the derivation of types, and the ways in which time values are represented.
The four aspect models in DEMO, thus the Cooperation Model (CM), the Action
Model (AM), the Process Model (PM) and the Fact Model (FM) are discussed in [1].
Secs. 3 thru 6 contain their complete and formal definitions, including the meta model
of each of them, as well as the various ways in which they can be expressed. Figures
that cannot be easily inserted in the text, are put in Sec. 7, as an appendix.

2 The basics of DEMOSL

2.1 Definition of terms
In this section, the terms that are used in formal expressions of DEMOSL, are defined
in the so-called Extended Backus-Naur Form (EBNF) , the international standard 2

syntactic meta language, defined in ISO/IEC 14977 . As much as possible, English 3

words are added to the syntactical elements of DEMOSL, which make the textual
expressions pretty intuitive: they look like structured English sentences, quite unlike
the common Peano-Russell notation . To improve the readability, words, like articles 4

and prepositions, are added. These added words are printed in bold. There are also a
number of reserved terms, which connect DEMOSL to the EE theories in [1].

In EBNF, names are put between double quotation marks (“ and ”). The symbol “|”
stands for “(exclusive) or”. The symbol “,” means “followed by”; the EBNF brackets
“{“ and “}” enclose symbols that may be repeated an unlimited number of times; “}-“
as the closing bracket means that there is at least one occurrence. Where considered
helpful, comments are inserted between “%” and “%”.

3

reserved term = coordination act name | coordination fact name | special term;

coordination act name = “request” | “promise” | “declare” | “accept” | “decline” | “re-
ject” | “revoke” | “allow” | “refuse”;

coordination fact name = “requested” | “promised” | “declared” | “accepted” | “de-
clined” | “rejected” | “revoked” | “allowed” | “refused”;

special term = “performer” | “addressee” | “ct” % creation time % | “et” % event time
% | “ot” % operative time % | “now” % at any moment, the value of the variable now
is the current time % | “set of” % set of %;

transaction kind id = “TK”, {digit}-; Example: TK17
multiple transaction kind id = “MTK”, {digit}-; Example: MTK2
product kind id = “PK”, {digit}-; Example: PK02
actor role id = “AR”, {digit}-; Example: AR8
transactor role id = “TAR”, {digit}-; Example: TAR17
composite transactor role id = “CTAR”, {digit}-; Example: CTAR01

transaction kind name = entity type name, ing-form of a verb (in lower case);
Examples: rental completing, deposit paying

actor role name = entity type name, nominal form of a verb (in lower case);
Examples: rental completer, deposit payer

entity type name = noun or nominal phrase (in lower case);
Examples: rental, deposit paid rental

object class name = noun or nominal phrase (in upper case);
Examples: RENTAL, DEPOSIT PAID RENTAL

value type name = noun or nominal phrase (in lower case);
Examples: year, car group

value class name = noun or nominal phrase (in upper case) between “{“ and “}”;
Examples: {YEAR}, {CAR GROUP}

property type name = noun or nominal phrase (in lower case);
Examples: renter, pick-up branch

attribute type name = noun or nominal phrase (in lower case);
Examples: age, daily rental rate

event type name = perfect tense verb (in lower case);
Examples: completed, paid

entity name = {letter | digit}-
Examples: John, 1089, Mary47

value name = {letter | digit}-
Examples: sedan, 2020, 2458270D

As discussed in the FI theory [1], the signifier of a conceptual thing can be a name,
a noun or a sentence, depending on the kind of thing. Moreover, a name can be a

The DEMO Specification Language v4.6.14

proper name, like ‘John’ or ‘John Smith’ for a person, or an identifier like ‘TK01’ for
a transaction kind, ‘2272 BP’ for a postal code, and ‘069684996’ for a BSN (Dutch
citizen identifier). Note: to avoid confusion, it is recommended to put signifiers (of
any kind) between single quotation marks, as we did above. For example, one better
write “value type ‘car group’” instead of “value type car group”, and “car group
‘sedan’” instead of “car group sedan”.

entity reference = definite entity reference | indefinite entity reference | indirect entity
reference;

definite entity reference = entity type name, entity name;
 Examples: rental ‘1089’, car ‘387462’

indefinite entity reference = “some”, entity type name;
 Examples: some person, some car

indirect entity reference = “the”, property type name, {“of” | “in” | “on”, entity refer-
ence | value reference }-;
 Examples: the renter of rental ‘1089’,

the mother of the member of membership ‘387’,
the car of some rental in the year ‘2019’

entity variable = “[“, entity type name , “]”;
 Examples: [person], [car], [rental]

property variable = “the”, property type name, {“of” | “in” | “on”, entity variable |
property variable | value variable | attribute variable }-;
 Examples: the renter of [rental],

the father of the renter of [rental],
the renter of some rental on the day ‘2458270’,
the book of some loan on the ending day of rental ’12’

property condition = property variable, “is” | “is not”, property variable | entity refer-
ence;
 Examples: the renter of [rental] is the driver of [rental],
 the driver of [rental] is not person ‘92637’
 the father of the driver of [rental] is not person ‘92637’

value reference = definite value reference | indefinite value reference | indirect value
reference;

definite value reference = value type name, value name;
 Examples: number ‘1089’, day ‘2458270’, car group ‘sedan’

5

indefinite value reference = “some”, value type name;
 Examples: some number, some day, some car group

indirect value reference = “the”, attribute type name, {“of” | “in” | “on”, entity refer-
ence | value reference}-;
 Examples: the weight of car ‘387462’,

the weight of the car of rental ‘1089’,
the daily rental rate of car group ‘sedan’ in the year ‘2’

value variable = “[“, value type name , “]”;
 Examples: [day], [car group]

attribute variable = “the”, attribute type name, {“of” | “in” | “on”, entity variable |
property variable | value variable | attribute variable}-;
 Examples: the age of [person],

 the daily rental rate of [car group] in [year]
the deposit amount of some rental on the day ‘2458270’,
the penalty of some loan on the ending day of
rental ’1089’

attribute condition = attribute variable, “is equal to” | “is unequal to” | “is greater
than” | “is less than” | “is equal to or greater than” | “is equal to or less than” ,
attribute variable | definite value reference;
 Examples: the ending day of [rental] is equal to or greater than

the starting day of [rental],
 the number of free cars in the car group of [rental]

on every day between the starting day of [rental]
and the ending day of [rental] is greater than
the number ‘0’

NOTE 1. The time indication in the last three lines of the second example (on every
day …) is clarified in Sec. 2.4.
NOTE 2. The fact type “free cars” is a derived fact type. It has to be specified, as part
of the Fact Model of an organisation.
NOTE 3. The mathematical comparisons above only apply to numerical instances of
value types (or scale types) of the sorts Ordinal, Interval, Rational and Absolute (cf.
Sec. 2.3).

2.2 Declaration and derivation of types
Types (or better: fact types) can be specified graphically and textually, both on the
schema level and on the meta schema level. The graphical specification is discussed
in Secs. 3 thru 6. Below, the textual specification is presented.

The DEMO Specification Language v4.6.16

type declaration = entity type declaration | value type declaration | property type de-
claration | attribute type declaration | event type declaration;
entity type declaration = “entity type”, entity type name, “exists”;
 Example: entity type ‘rental’ exists
value type declaration = “value type”, value type name, “exists”;
 Example: value type ‘car group’ exists
property type declaration = “property type”, property type name, “exists”;
 Example: property type ‘renter’ exists
attribute type declaration = “attribute type”, attribute type name, “exists”;
 Example: attribute type ‘starting day’ exists
event type declaration = “event type”, event type name, “exists”;
 Example: event type ‘completed’ exists

Derived types can be specified graphically or textually. Examples of graphically spe-
cified derived types are provided in Sec. 6. Examples of textually specified derived
fact types are (the symbol “≡” means “is defined as”):

the rental charge of [rental] ≡ the duration of [rental] times the daily rental rate of
the car group of [rental] in the year of the starting day of [rental],
the duration of [rental] ≡ the ending day of [rental] minus the starting day of [rental]
+1,
the actual duration of [rental] ≡ the day of the et of (car returning for [rental] is ac-
cepted) minus the starting day of [rental] + 1,
the late return penalty of [rental] ≡ (the actual duration of [rental] minus the duration
of [rental]) times (the late return penalty in the year of the starting day of [rental]);

2.3 Value types - dimensions, units and sorts
Values of variables, like the day of birth of a person, her/his length or weight, or the
sort of a transaction kind (original, informational or documental), are basically meas-
urements on a (measurement) scale. Commonly, six scale sorts are distinguished: Or-
dinal (O), Interval (I), Rational (R), Categorial (C), Absolute (A) and Boolean (B).

Ordinal scales have no zero point and no measuring unit, they are only orderings
from less to more. A well-known example is the hardness of rocks: it is only possible
to determine that the one rock is harder than an other rock.

Interval scales do have a measuring unit but no zero point. The measuring unit can
be chosen freely. A well-known value type in this scale sort is temperature (Note, the
temperature in degrees Kelvin does have a physical zero point but it is still considered
an interval scale). Another example is time. Because of the very natural unit of a day,
all calendars are based on this measuring unit.

Rational scales have also a freely choosable measuring unit but a fixed zero point.
Well-known value types in this scale sort are length, surface, volume and velocity.

7

Categorial scales (also called nominal scales) are actually not real measurement
scales, because there is no measurement unit and no zero point. They are (basically
arbitrary) divisions. Examples are product categories in shops (like fruit, vegetables,
dairy, etc.) and car groups in a car rental company (like sedan, mini, sports car, etc.).

The Absolute scale is actually not a real measurement scale, it is just counting: the
number of apples in the basket and the number of persons in a car. Considered as a
scale, it has a fixed zero point and a fixed measuring unit.

The Boolean scale consists of the two (logical) boolean values true and false.

In Table 1, the standard value types are presented. One may assume that they are al-
ways present. So, there is no need to define them explicitly in a DEMO model.

value dimension measuring base scale
type unit type sort

time TIME Julian day, hour, minute… integer I
duration TIME number of days, .. integer A
amount MONEY dollar ($), euro (€), … real R
mass MASS … kg, g, mg, … real R
length LENGTH … m, cm, mm, … real R
area LENGTH2 … m2, cm2, mm2, … real R
volume LENGTH3 … m3, cm3, mm3, … real R
velocity LENGTH/TIME … m/s, … real R
temperature TEMPERATURE oC, oF, K real I
number NUMBER < not applicable > integer A
truth value BOOLEAN < not applicable > {true, false} B
sort SORTAL < not applicable > {O, I, D} C

Table 1 Dimensions, units and sorts of value types

By the value type ‘sort’ is meant the distinction of the three sorts of organisation
and production in the ALPHA theory [1]. Value classes (so the extensions of value
types) are formulated as follows in BNF: “{“, dimension name, “ : ”, unit name, “}”.
Examples of value classes are {MONEY : euro} or {MONEY : €}, and {TEMPER-
ATURE : oC}. It is allowed to omit the unit, and thus to only mention the dimension.
For example: amount {MONEY}. It is also allowed to abbreviate <dimension><unit>
to <unit> if no confusion can arise. In that case, the unit is written in capital. For ex-
ample: {JULIAN: day} may be abbreviated to {DAY}.

2.4 Representing time values
Points in time, like the day of birth of a person and the starting day of a car rental, are
basically measured on the Julian time scale. Next to this scale, time units from the
Gregorian Calendar, like year and month, may be used. The conversion between the
Julian scale and the Gregorian Calendar is based on the converter of the US Navy . 5

The DEMO Specification Language v4.6.18

So, in expressions like “the first day of the next month (from now)” and “the year of
the starting day of [rental]”, the values of month and year are calculated by means of
this converter. Note that the value of the universal variable ‘now’ is also expressed in
the Julian scale.

Next to the common time durations (or intervals) like days, weeks, months and
years, one may define arbitrary intervals by means of the expression “on every <time
unit> between <point in time> and <point in time>”. An interval defined in this way
is up to and including the second point in time. Here is an example from the case
Rent-A-Car; it regards all days from, and including the starting day, up to, and includ-
ing, the ending day:

the number of free cars in the car group of [rental] on every day between the
starting day of [rental] and the ending day of [rental] is greater than
the safety minimum in the year of the starting day of [rental]

The preciseness with which points in time are measured and represented depends
on the situation at hand. In normal enterprise situations, the smallest unit is probably
the second. For example, the Julian value of ’30 April 2019 12:00 hours, 0 minutes
and 0 seconds’ is ‘2458604.000000’, and the Julian value of ’30 April 2019 12:00
hours, 0 minutes and 1 second’ is ‘2458604.000012’.

2.5 The four aspect models
The ontological model of an enterprise in DEMO consists of the integrated whole of
four aspect models or sub models, each taking a specific view on the enterprise’s or-
ganisation: the Cooperation Model, the Action Model, the Process Model and the Fact
Model. The relationships between the four models is illustrated in Fig. 1. Recall that a
model of a thing is its understanding within a theoretical framework (cf. MU theory in
[1]). A DEMO model is the understanding of a Scope of Interest (SoI) within the
framework of the EE theories (cf. Part B of [1]).

The Cooperation Model (CM) of an organisation is a model of the cooperation
between its actors (cf. OMEGA theory in [1]), or, following the DELTA theory in [1],
the construction of the organisation, i.e. of the transactor roles and the coordination
structures among them.

The Action Model (AM) of an organisation is a model of its operation, i.e. the
manifestation of the construction in the course of time (cf. PSI theory and DELTA
theory in [1]). It comprises action rules and work instructions.

The Process Model (PM) of an organisation is a model of the (business) processes
(consisting of transaction steps and process links between them) that take place as the
effect of the activity of actors (cf. PSI theory in [1]). In systemic terms, it is a spe-
cification of the state space and the transition space of the coordination world (cf.
DELTA theory in [1]).

The Fact Model (FM) of an organisation is a model of the products (independent
fact types with their dependent fact types) of the organisation that actors bring about
(cf. PSI theory in [1]). In systemic terms, it is a specification of the state space and the
transition space of the production world (cf. DELTA theory in [1]).

9

Fig. 1 The integrated DEMO aspect models

Fig. 2 Ways of expressing the four aspect models

As illustrated by the triangular shape in Fig. 1, and the division of this shape in the
four aspect models, the CM and the AM cover both coordination and production,
while the PM regards only coordination and the FM only production. The PM con-
nects the CM and the AM, as far as the coordination between actors is concerned. In a
similar way, the FM connects the CM and AM, as far as production is concerned. The

Object Fact
Diagram
OFD
DFS
Derived Fact
Specifications

Process Structure
Diagram
PSD
TPD

Transaction Process
Diagram

CUT
Create Use Table

TPT Transactor Product Table

BCT Bank Contents Table

ADT
Authorisation Delegation Table

Coordination Structure Diagram
CSD

ARS
Action Rule

Specifications

WIS
Work Instruction
Specifications

BAT Bank Access Table

transaction steps
process links

production
fact types

PRODUCTIONCOORDINATION

work instructionsaction rules

OPERATION

PROCESS PRODUCT

CONSTRUCTION

transactor roles
coordination structure

FM

CM

PM

AM

The DEMO Specification Language v4.6.110

AM is the solid basis on which the other three models are standing. They are already
‘contained’ in the AM, so to speak, but they need yet to be ‘extracted’ from it. Lastly,
there is nothing ‘above’ the CM. Fig. 15 contains the combined conceptual schemata
of the CM, the AM and the PM, expressed in GOSL (cf. MU theory in [1]). Fig. 16,
contains the meta schema of the FM. Every instance of the meta schema, so every
FM, is itself a schema, namely of the production world of the modelled organisation.

Fig. 2 presents the ways in which the aspect models are expressed, in diagrams,
tables and (formal) textual expressions. They are all formally defined in Figs. 17
through 25. The Bank Access Table (BAT) is an alternative way of expressing the
interstriction structure (cf. Sec. 3). Therefore it is put on the left side of Fig. 2. The
other tables, shown on the right side, are so-called cross model tables: each of them
represents a specific relationship between two aspect models. The set of cross-model
tables is by no means exhaustive: one may freely define new ones if there is a need.
The presented tables are just the ones that are commonly used in practice. In addition,
alternative diagrams may be developed to express the four models. As long as they
are also formally defined, like the ones we discuss, there is no objection.

3 The Cooperation Model
The Cooperation Model (CM) of an organisation (or SoI) is a model of the coopera-
tion between its actors (cf. OMEGA theory in [1]), or, following the DELTA theory in
[1], the construction of the organisation, i.e. of the transactor roles and the coordina-
tion structures among them.

Within a SoI one may want to indicate a part on which one wants to focus, e.g. a
legal unit like a company. This is done by colouring the actor role shapes outside the
focus light-grey. The transactor roles inside the focus are called internal, and the
transactor roles outside are called environmental (if there is interaction with an intern-
al actor role) or external otherwise (cf. DELTA theory in [1]). A transaction kind of
which both the initiator and the executor are internal, is called internal. If either of
them is environmental, it is called a border transaction kind. Multiple transaction
banks are by definition external and therefore also coloured light-grey. There are three
coordination structures among transactor roles (cf. OMEGA theory in [1]): the inter-
action structure, the interimpediment structure, and the interstriction structure. These
structures are graphically expressed in the Coordination Structure Diagram (CSD).

The legend of the CSD is exhibited in Figs. 3 and 4. The upper left part of Fig. 3
shows the elementary and self-activating transactor roles. The shapes and constructs
in the lower part of Fig. 3 are considered to be sufficiently explained in the figure. The
constructs hold for each of the three sorts of organisations as distinguished in the AL-
PHA theory in [1]: O-organisations, I-organisations, and D-organisations.

Fig. 4 shows on the right side how these sorts are distinguished. On the left side, it
shows how external and environmental transactor roles are indicated, namely by col-
ouring the shapes light-grey. The right side of the figure also shows how external
(multiple) transaction kinds are indicated.

11

Fig. 3 Legend of the Coordination Structure Diagram (1)

Fig. 4 Legend of the Coordination Structure Diagram (2)

The interaction structure consists of initiator links between transactor roles and
transaction kinds. Through this structure, trees of transactor roles emerge, as illus-
trated by Fig. 5. It is the CSD of the case GloLog (cf. [1], Chap. 18). Initiator links are
indicated by solid lines between transactor roles and transaction kinds. A cardinality
range (k..n) may apply, as shown in Fig. 3.

By definition, the top of such an interaction tree is a self-activating transactor role
(cf. OMEGA theory in [1]). The organisation of an enterprise, or any other SoI, often
contains only subtrees of these trees. Then, the cut-off upper part is indicated by a
composite transactor role. Most business processes in enterprises start in this way.

The interimpediment structure consists of wait links from transaction kinds to actor
roles. A wait link expresses that actors in the connected actor role have to wait for a
specific progress in transactions of the connected transaction kind before they can
proceed their work (in their own transactions). In other words, the initiators or ex-
ecutors of these transactions impede actors in the connected actor role to carry on as

initiator link

actors AR01 are initiator
of transactions TK02.
Within every TK01, a minimum
of k and a maximum of n
transactions TK02 are initiated

elementary
transactor role TARi

TARi consists of actor role ARj
and transaction kind TKj;
actors ARj are executor
of transactions TKj

self-activating
transactor role TARj

TARi consists of actor role ARj
and transaction kind TKj;
actors ARj are initiator and
executor of transactions TKj

access link

actors AR01 have (reading)
access to transaction bank TK02

wait link

actors AR01 must wait for a
specific progress of transactions
TK02 before continuing
transactions TK01

01

02

01

02

01

02

j

j

j

environmental elementary
transactor role TARj

j

external transaction kind TKj
with elementary
executor role ARj

k..n

j j

actors ARi are executor of
original transactions TKj

j j

actors ARi are executor of
informational transactions TKj

j j

actors ARi are executor of
documental transactions TKj

j

multiple original
transaction kind MTKj

j

multiple informational
transaction kind MTKj

j

multiple documental
transaction kind MTKj

j

j

j

j

external multiple original
transaction kind MTKj

j

kk

j

there are several actor
roles inside CTARk

there is an elementary
actor role ARj inside CTARk

k
external composite
transactor role CTARk

j

composite
transactor role CTARk

a CTAR comprises a network
of interlinked transactor roles

k

The DEMO Specification Language v4.6.112

long as the wait condition holds. A wait link is indicated by a dotted arrow from a
transaction kind to the impeded actor role. The interimpediment structure constitutes
the process dependencies among the corresponding transaction processes: the acts of
the connected actors depend on the progress of the connected transaction processes.

Fig. 5 The three coordination structures in the GloLog enterprise

If one abstracts from the realisation of the O-organisation of an SoI, and thus aims
at producing its essential model (cf. ALPHA theory in [1]), a third coordination struc-
ture comes on the scene. This interstriction structure consists of access links from 6

actor roles to transaction kinds, which are now conceived as transaction banks. Access
links are the ontological abstraction of the sharing transaction kinds between the O-
organisation and the I-organisation of the SoI (cf. ALPHA theory in [1]). An access
link expresses that actors in the connected actor role have reading access to the con-
tents of the transaction bank (both to the C-facts and to the P-facts). Access links are
indicated by dashed lines between actor roles and transaction kinds. The interstriction
structure constitutes the state dependencies among the corresponding transaction pro-
cesses: the acts of the connected actors depend on the current state of the connected
transaction processes, represented by the facts in the transaction bank

The other transaction kinds between the O- and the I-organisation, so the remem-
bering transaction kinds are abstracted from by considering the facts that are created
by the initiator and the executor of a transaction to be stored in the transaction bank.

Fig. 17 shows the fact types in the schema of the CM of which instances are ex-
pressed in a CSD: the entity types ‘transaction kind’, ‘actor role’, their combination in
the concept of ‘transactor role’, as well as the entity types ‘composite transactor role’
and ‘multiple transaction kind’, and the property types ‘executor link’, ‘initiator link’,
‘access link’, ‘wait link’ and ‘is part of’.

As an example, the CSD in Fig. 5 contains 18 transactor roles. Three of them are
self-activating: TAR11, TAR12 and TAR13. There is one composite transactor role:
CTAR01. The fourteen initiator links constitute the interaction structure. Next, there
are four wait links: one from TK02 to AR10, one from TK03 to AR14, one from
TK07 to AR15, and one from TK15 to AR17, together constituting the interimpedi-
ment structure. Lastly, there are three access links: one from AR11 to TK01, one from

sale
completer

CTAR01

client

sale
transporter

purchase completer

purchase

11
controller

01

10

02

purchase
loader

purchase
shipper

03 17 07

container
content

transporter

container
content
loader

16 08

13

container
content
unloader

09

land transport completer

15

land transport

controller

purchase
releaser

ship
content
loader

ship
content
unloader

ship
content

transporter

sea transport

controller

04

12

05 06

sea transport completer

14

1..*

0..* 0..* 0..*

1..*

13

AR12 to TK03, and one from AR13 to TK14, together constituting the interstriction
structure. Note that the access links to external information sources are omitted. Oth-
erwise, there would have been many more access links.

Following the OER method ([1], Chap. 12), the CSD of an organisation is obligat-
orily supplemented by a Transactor Product Table (TPT), for the sake of formulating
product kinds formally and properly, right from the beginning. A TPT is a table of
transaction kinds with their corresponding product kinds and executing actor roles (or
executor roles). The syntax of a TPT entry is specified in EBNF as follows:

TPT entry = (transaction kind id, transaction kind name), (product kind id, product
kind formulation), (actor role id, actor role name);
product kind formulation= entity variable | property variable | attribute variable, “is”,
perfect tense verb;

Examples: [rental] is contracted
the car of [rental] is returned
the fee of [membership] in [year] is paid

Fig. 21 shows the fact types in the schema of the CM of which instances are ex-
pressed in a TPT: the entity types ‘transaction kind’, ‘product kind’ and ‘actor role’,
and the property types that determine the product kind of each transaction kind as
well as its executing actor role. Because the product kinds are identical to the inde-
pendent P-fact types in the FM, the TPT is called a cross-model table; it bridges the
CM and the FM. Table 2 exhibits the TPT of the case Rent-A-Car (cf. [1], Chap. 15).

Table 2 TPT of the Rent-A -Car organisation

A CSD may be supplemented by a Bank Contents Table (BCT). This is a table that
shows the fact types of which instances are created or used by the initiators or execut-
ors of the identified transaction kinds. These instances are considered to be contained
in the corresponding transaction banks. The BCT of an organisation bridges its CM
and FM. Table 3 exhibits the BCT of the case Volley (cf. [1], Chap. 12).

The syntax of a BCT entry is specified in EBNF as follows:

BCT entry = transaction kind id, (transaction kind name | multiple transaction bank
id), multiple transaction bank name, (object class name | product kind formulation |
property variable | attribute variable);

DEMOSL 4.4 slide 14 ©2019

Legend of the Transactor Product Table

The Transactor Product Table (TPT) is a table of transaction kinds with the corresponding product kinds and
executor roles. The syntax of a TPT entry is specified in EBNF as follows:

TPT entry = transaction kind id, transaction kind name, product kind id, product kind formulation, actor role id,
actor role name;

product kind formulation= entity variable | property variable | attribute variable, “is”, perfect tense verb;
Example: [rental] is contracted
Example: the car of [rental] is returned
Example: the fee of �membership� in [year] is paid

Example TPT (from case Rent-A-Car):

transaction kind product kind executor role
TK01 rental completing
TK02 car taking
TK03 car returning
TK04 deposit paying
TK05 invoice paying

PK01 [rental] is completed
PK02 the car of [rental] is taken
PK03 the car of [rental] is returned
PK04 the deposit of [rental] is paid
PK05 the invoice of [rental] is paid

AR01 rental completer
AR02 car taker
AR03 car returner
AR04 deposit payer
AR05 invoice payer

The DEMO Specification Language v4.6.114

In Table 3, the fact types are grouped according to the transaction banks in which
they are stored. P-fact types whose instances are used within the organisation but cre-
ated outside it, are also listed in the BCT. Because one commonly doesn’t know the
specific transaction bank in which they reside, a multiple transaction bank is included
that is considered to encompass this transaction bank. Fig. 22 shows the fact types in
the schema of the CM of which instances are expressed in a BCT: the entity types
‘transaction kind’, ‘multiple transaction kind’ and ‘P-fact type,’ and the property type
that determines which facts are contained in which transaction bank.

Table 3 BCT of the Volley organisation

A CSD may also be supplemented by a Bank Access Table (BAT). It is an alternat-
ive representation of the interstriction structure of an organisation. A BAT is particu-
larly suitable if there are many access links, whose expressions in a CSD would lead
to a mess of crossing dashed lines. Table 4 shows the BAT of the Library organisation
(cf. [1], Chap. 16). A “U” (from Uses) indicates that there is an access link from the
actor role (in the row) to the transaction bank (in the column). The access links from
the executor and initiator roles to transaction kinds are indicated respectively by “Ex”
and “In”. As follows from the PSI theory in [1], both the initiator and the executor of
a transaction need access to the facts that are produced during the transaction process.

Fig. 23 shows the fact types in the schema of the CM of which instances are ex-
pressed in a BAT: the entity types ‘transaction kind’, ‘multiple transaction kind’, ‘act-
or role’ and ‘composite actor role, and the property types that determine the existence
of executor links, initiator links and access links. The executor links and initiator links
are included because they imply the existence of an access link.

bank independent/dependent facts
TK01 membership starting

TK02 membership paying

MTK01 persons facts

MTK02 Volley facts

MEMBERSHIP
[membership] is started

the starting day of [membership]
the member of [membership]
the amount to pay of [membership]

the first fee of [membership] is paid
the amount paid of [membership]

PERSON
the day of birth of [person]

YEAR
the minimal age in [year]
the annual fee in [year]
the max members in [year]

15

Table 4 BAT of the Library organisations

4 The Action Model
The Action Model (AM) of an organisation is the ontological model of its operation
(cf. PSI theory and DELTA theory in [1]). It comprises action rules and work instruc-
tions. In practice, the AM of an organisation is often incomplete or even absent. In
such a case, the actors are supposed to base their decisions on their professional and
general knowledge.

Action rules guide actors in responding to coordination events. As discussed in the
PSI theory [1], actors are basically autonomous in deciding how to respond to co-
ordination events, as well as how to perform production acts. In principle, there is an
action rule for every coordination event kind whose occurrences have to be responded
to. It specifies the facts in the production world and/or the coordination world whose
presence or absence in the current state of the world must be assessed, as well as the
(production and/or coordination) acts that must be performed, depending on the out-
come of the assessment. In current practice, action rules are commonly called (imper-
ative) business rules [3]. Below, the Action Rule Specifications are defined in EBNF.
Multiple use is made of already defined terms, to keep the definition as short as pos-
sible. The bracket pair “[“ and “]” indicates that the enclosed part is optional.

action rule specification = event part, assess part, response part;

event part= agendum clause, [while clause], [with clause];
agendum clause = “when”, transaction kind name, “for”, entity variable,

“is”, perfect tense intention;
while clause = “while”, {transaction kind name, “is”, perfect tense

intention}-;
with clause = “with”, {(property variable, indefinite entity reference) |

(attribute variable, indefinite value reference) }-;

Library: Bank Access Table

Bank
Actor

TK01 TK02 TK03 TK04 TK05 TK06 TK07 TK08 TK09 MTK01 MTK02 MTK03

AR01 Ex In U U U

AR02 Ex U

AR03 U In In, Ex U U U

AR04 U Ex U U U U

AR05 U In In, Ex U U

AR06 U U Ex In In In U U U

AR07 Ex U

AR08 Ex U

AR09 Ex U

CTAR01 In In U

CTAR02 In U

The DEMO Specification Language v4.6.116

assess part = rightness division, sincerity division, truth division;
rightness division = “rightness:” {property condition | attribute condition }- |

<informal specification>;
sincerity division = “sincerity:” {property condition | attribute condition }- |

<informal specification>;
truth division = “truth:” {property condition | attribute condition }- |

<informal specification>;
<informal specification> = a text between “*” and “*”;

response part = “if”, “performing the action after then is considered justifiable”,
“then”, action clause, [“else” action clause];

action clause = {present tense intention, transaction reference, {with clause}}-;
transaction reference = transaction kind name, “for”, entity type name;

As an example of an ARS, we present the specification of the action rule from the
case Rent-A-Car (cf. [1], Chap. 15), in which the declaration of the deposit payment
is responded to.

when deposit paying for [rental] is declared (TK04/da)

assess rightness: the performer of the declaration is the deposit payer of [rental]
 the addressee of the declaration is

the rental completer of [rental]
 sincerity: * the performer seems sincere in performing the declaration *
 truth: the declared ot of deposit paying for [rental] is within

the promised ot of deposit paying for [rental];
 the declared deposit amount of deposit paying for [rental] is

equal to the promised deposit amount of deposit paying
for [rental]

if performing the action after then is considered justifiable
then accept deposit paying for [rental] [TK04/ac]
 to the performer of the declaration
else reject deposit paying for [rental] [TK04/rj]
 to the performer of the declaration
 with % < explanation of the reason for rejecting > %

Work instructions guide the executor of a transaction in performing the production
act. Although they are sometimes expressed in work flows, these work flows do not
represent business processes but processes in the production world. In DEMO only
the final effect of production processes, i.e. the resulting product, is remembered.

Fig. 18 shows the position of action rules and work instructions in the combined
conceptual model of the CM, AM and PM. Every action rule applies to one particular
transaction kind step kind, but there may be several action rules that apply to the same

17

coordination event kind. As an example from the case Rent-A-Car (cf. [1], Chap. 15),
the action rule specifications ARS-3, ARS-7 and ARS-9 all apply to the event kind
TK01/pm, although with different additional while-conditions. Work instructions
however are considered to apply to the execution of precisely one product kind, and
vice versa, since they are basically product kind specific.

 In order to show precisely the delegations of authority (cf. PSI theory in [1]), one
may add an Authorisation Delegation Table (ADT). An ADT bridges the AM and the
implementation of the organisation, in particular the assignment of tasks (T) to task
performers (P). The definition of the ADT is presented in Fig. 25. A distinction is
made between a global and a detailed ADT. The columns of an ADT represent tasks
(T), ranging from single process steps (in a detailed ADT) to the responsibility ranges
of actor roles (in a global ADT). The rows represent the task performers (P), ranging
from functionaries to complete enterprises. An “A” at the crossing of a column and a
row indicates that the performer is authorised to perform the task, a “D” that he/she
has delegated authority. In a global ADT, only A’s can occur since it is by definition
not possible to delegate a complete actor role.

Table 5 exhibits the detailed ADT of the case Volley [1]. It shows that the function-
ary Secretary has delegated the authority to perform C-act kinds TK01/dc, TK01/da
and TK02/rq to the functionary Administrator.

Table 5. Detailed ADT of the case Volley

5 The Process Model
The Process Model (PM) of an organisation is the ontological model of the state space
and the transition space (cf. DELTA theory in [1]) of its coordination world. Regard-
ing the state space, the PM contains, for all internal and all border transaction kinds,
the process step kinds as well as the applicable existence laws, in full accordance with
the Complete Transaction Pattern (CTP) (cf. Fig. 6). Regarding the transition space,
the PM contains, for all internal and all border transaction kinds, the process step
kinds as well as the applicable occurrence laws, including the cardinalities of the oc-
currences, in full accordance with the CTP. Because the intra-transaction occurrence
laws are fully determined by the CTP, a PSD contains only the inter-transaction oc-
currence laws, expressed in process links between process steps in different transac-
tions. There are two kinds of them: response links and wait links. By a process step is
understood the performing of a C-act and the becoming existent of the corresponding
C-fact. Consequently, a process step kind is the combination of a C-act kind and the
corresponding C-fact kind.

T/P TK01/dc TK01/da TK02/rq

Secretary A A A

Administrator D D D

The DEMO Specification Language v4.6.118

Fig. 6 TPD of the complete transaction pattern (CTP)

The PM of an organisation connects its CM and AM, as far as coordination is con-
cerned (cf. Fig. 1). A PM is expressed in a Process Structure Diagram (PSD), option-
ally supplemented by Transaction Process Diagrams (TPD) and a Create Use Table
(CUT). Because the PSD is based on the Complete Transaction Pattern (CTP), we
present the Transaction Process Diagram (TPD) of the CTP in Fig. 6. The legend of
the TPD is explained in Fig. 7.1.

Fig. 7.1 Legend of the transaction process diagram (TPD)

>F1 F2
reversion link: reaching state F1 (in a revocation process) implies the instantaneous
transition to state F2 in the main process

AF response link: C-act A is performed in response to the occurrence of C-event F

A F
causal link: performing C-act A causes the becoming existent of C-fact F; this is
identical to saying that performing A causes the occurrence of the C-event F

F+ means: the state of the main process is F or further; e.g., if F is ‘declared’, then
F+ means that the state is ‘declared’ or ‘accepted’ or ‘rejected’

F
+

RF
conditional link: in order to perform the revocation C-act R successfully, the C-
fact F must exist (which is identical to saying that reached state F in the main
process is reached)

initiator

executor

rq
+

?

rf

al

rv
rq

rf

al

in

rv
rq

>

rf rf

al
initiator

?

al

rv
ac

da

rv
ac

>

ac

executor

executor

initiator

pm
+

?

al

rf

rv
pm

al

rf

rv
pm

rq

>

al al

rf

executor

?

rf

rv
da

rv
da

initiator

da
+

pm

>

dc

rq

rq

pm

pm da

daac

in

initiator

executor

ac rj

rjdc

0..1

0..1

rv: revoke(d)
al: allow(ed)
rf: refuse(d)

rv: revoke(d)
al: allow(ed)
rf: refuse(d)

19

Fig. 7.2 Legend of the Process Structure Diagram (PSD)

Fig. 8 General shape of the PSD

Figure 8 exhibits the general shape of transaction kinds in a Process Structure Dia-
gram (PSD). The sausage-like shape arises from stretching the disk shape horizont-
ally. One must imagine that there is a (non-proportional) linear time axis from left to
right. The sort of the shown transaction kind is original, indicated by the red diamond
(cf. Fig. 4). As discussed in the PSI theory in [1], a transaction proceeds in three
phases: the order phase (to the left of the diamond), the execution phase (the dia-
mond), and the result phase (to the right of the diamond). The state “in” is the initial
state of the transaction process; it is some state in some transaction process. The in-
dicators of the other states, as well as the indicators of the presented C-acts, are arbit-
rarily chosen letters. In order to show that response links and wait links can apply
both to the order phase and to the result phase, they are drawn on both sides (u, v, w
for the order phase, and x, y, z for the result phase). The P-act (named TKi/ex, “ex”
from “execute”) is indicated by a grey-coloured small box.

In a PSD, only those C-act kinds and C-fact kinds are shown that are connected to
other transaction processes by means of response links or wait links (cf. Figs. 7.1 and
7.2). The shapes of C-act kinds (the small boxes) that are performed by the initiator
are drawn on top of the ‘sausage’, so within the responsibility area of the initiator,
whereas the shapes of C-act kinds that are performed by the executor are drawn at the
bottom, so within the responsibility area of the executor, as is the shape of the P-fact
kind (the small grey box). In principle, the same rule holds for the shapes of C-fact
kinds (the small disks). So, the shapes of C-fact kinds created by the initiator are
drawn on the top of the ‘sausage’, and the shapes of C-fact kinds created by the ex-
ecutor are drawn at the bottom. However, to avoid that the drawing of response links
and wait links become a mess, it is allowed to put the shapes of C-fact kinds on the
other side. For the same reason, one may duplicate the shapes of C-act and C-fact
kinds. The states xx and yy represent states from which the revoke request or revoke
promise, and the revoke declare or revoke accept are performed respectively.

AF wait link: performing C-act A has to wait for the occurrence of C-event F

A F causal link: performing C-act A causes the becoming existent of C-fact F; this is
identical to saying that performing A causes the occurrence of the C-event F

initiator role of
transactions TKi

executor role of
transactions TKi

TKi
rq

u w x z

initiation of …
from state u

initiation of …
from state x

… is a wait
condition for w

… is a wait
condition for z

v

state v is a wait
condition for …

y

state y is a wait
condition for …

… is a wait
condition for TKi/ex

in

rv-rq
rv-pm

xx

rv-da
rv-ac

yy

The DEMO Specification Language v4.6.120

Fig. 9 PSD of the car transportation process of Rent-A-Car

The response links in Fig. 8 from C-fact kinds to (unspecified) C-act kinds are
called initiation links. By definition, they start from the shape of a C-fact kind and end
in the shape of the request act of some transaction kind. A C-fact shape may have sev-
eral outgoing initiation links, meaning that transactions of several transaction kinds
are initiated from it. Similarly, a C-fact kind shape may have several outgoing wait
links. It means that the occurrence of an event of the C-fact kind is a wait condition
for the performance of acts of several C-act kinds. Likewise, a P- or C-act kind shape
may have several incoming wait links. It means that performing the act has to wait for
the occurrence of a number of coordination events.

To response links as well as to wait links, cardinality ranges apply. A cardinality
range k..n for a response link means that the C-act at the arrow side is performed a
minimum number of times k and a maximum number of times n. The default value of
k and n is 1; default values are commonly omitted in a PSD. Likewise, a cardinality
range k..n for a wait link means that performing the C- or P-act at the arrow side is
postponed until a minimum number of k and a maximum number of n C-events at the
shaft side have occurred. The default value of k and n is again 1; default values are
commonly omitted in a PSD. In order to illustrate the cardinality ranges in a PSD,
Fig. 9 exhibits one of the PSDs from the case Rent-A-Car (cf. [1], Chap. 15). It shows
in addition how self-activation is expressed in a PM, namely by a response link from
the state promised (pm) to the act request [rq].

Fig. 10 The use of a TPD as a supplement to a PSD

dc

rq

rq

pm

pm da

daac

in

initiator

executor

ac rj

rjdc

0..1

0..1

TK02
ac

TK02
rq

rq

pm 07rq

06 ac

0..* 0..*

06

transport
completer

transport
manager

07

transport
manager

pmrq

transport completing

transport managing

21

Fig. 19 shows the fact types in the schema of the PM of which instances are ex-
pressed in a PSD: the entity types ‘transaction kind’, ‘actor role’, ‘transaction kind
step kind’ and ‘general step kind’, as well as the property types ‘executor link’, ‘initi-
ator link’, ‘response link’ and ‘wait link’. Note that every ‘sausage’ contains the com-
plete transaction pattern. In order to show precisely the connections to and from other
transaction kinds, the PSD of an organisation may be supplemented by a number of
Transaction Process Diagrams (TPD).

An example of the use of a TPD in the case Volley, to show precisely the connec-
tions between the transaction kinds TK01 and TK02, is exhibited in Fig. 10. To save
space, only the standard pattern of TK01 is shown. In the colour tangerine, the con-
nections between the patterns of transaction kinds TK01 and TK02 are shown. In re-
sponse to the event (TK01/pm), the act [TK02/rq] is performed. The performing of
the P-act [TK01/ex] has to wait for the occurrence of (TK02/ac).

The PSD (and TPDs) of an SoI may be supplemented by a Create Use Table
(CUT). A CUT is a cross-model table that connects the PM and the FM. It shows in
which transaction steps instances of the fact types in the FM (cf. Sec. 6) are created
(as an effect of performing the step) and in which steps they are used (in settling the
agendum). The contents of a CUT is fully determined by the AM of the considered
organisation. The syntax of a CUT entry is specified in EBNF as follows:
CUT entry = object class | P-fact type, C-act kind | “<derived>” | “<given
externally>” | “<provided as parameter>” , C-fact kind;

Table 5 CUT of the case Volley

As an example, Table 5 shows the CUT of the case Volley. All fact types, so entity
types, value types, event types, property types and attribute types, that occur in the

P-fact type created in performing used when settling

MEMBERSHIP

PAID MEMBERSHIP

PERSON

YEAR

[membership] is started

the first fee of [membership] is paid

the member of [membership]

the payer of [membership]

the starting day of [membership]

the day of birth of [person]

the minimal age in [year]

the max members in [year]

the annual fee in [year]

the amount to pay of [membership]

the amount paid of [membership]

the first fee of [membership]

the number of members on [day]

the age of [person] on [day]

TK01/rq

<derived>

<given externally>

<given externally>

TK01/ac

TK02/ac

<provided as parameter>

<provided as parameter>

<provided as parameter>

<given externally>

<given externally>

<given externally>

<given externally>

TK02/rq

TK02/da

<derived>

<derived>

<derived>

TK01/pm

TK01/rq, TK01/pm

TK01/rq, TK01/pm, TK01/da

TK01/rq

TK01/rq

TK01/rq

TK01/rq

TK01/rq

TK02/da

TK01/rq, TK02/da

TK01/rq

TK01/rq

The DEMO Specification Language v4.6.122

FM are listed in the first column of the table. In the second column one indicates the
acts by which facts of the type in the left column are created. For fact types whose
instances are contained in external transaction banks, the indication is “<given extern-
ally>”. For fact types whose instances are provided as parameter values in the with-
clause of a when-clause of an action rule concerning the C-event type in the third
column, the indication in the second column is “<provided as parameter>”. Derived
fact types are indicated by “<derived>”. They have to be included in the Derived Fact
Specifications, as part of the FM. In the third column one indicates the agenda during
whose settling facts of the type in the left column are used (except for the entity and
value types since they are already indirectly used in the property and attribute types).

6 The Fact Model
The Fact Model (FM) of an organisation is the ontological model of the state space
and the transition space of its production world (cf. DELTA theory in [1]). Regarding
the state space, the FM contains the entity types, value types, property types and at-
tribute types that are relevant for the modelled organisation as well as the existence
laws that apply (cf. MU theory in [1]). The transition space of a production world is
fully determined by the transition space of the corresponding coordination world (cf.
PSI theory and DELTA theory in [1]), and thus by the PM of the considered SoI.

The FM of an organisation connects its CM and AM, as far as production is con-
cerned (cf. Fig. 3). An FM is expressed in an Object Fact Diagram (OFD), supple-
mented by (textual) Derived Fact Specifications (DFS). If needed, (textual) existence
laws may be added.

Fig. 11 Venn diagram notation of a (mathematical) function

Set theory and mathematical function theory help in understanding the relation-
ships between the schema level and the instance level of the conceptual model of a
world. Therefore, we base the explanation of the FM on it. The common way of rep-
resenting sets in set theory is the Venn Diagram. In such a diagram, the shape of a set
is an oval; symbols within the oval represent elements of the set (cf. Fig. 11). The

RENTAL PERSON

r1

r2

r3

p2

p1

p3

has as renter: RENTAL -> PERSON

has as renter(r1)=p1
has as renter(r2)=p2
has as renter(r3)=p2

>

>

>

p4

The FM and set theory (2)

23

common way of representing functions (or binary relations in general) is to extend the
Venn Diagram with connections between the elements of two (not necessarily differ-
ent) sets. One set is called the domain of the function, the other one the range. A func-
tion maps the elements in the domain to the elements in the range. Fig. 11 exhibits an
extended Venn Diagram, representing the function ‘has as renter’, having as domain
the class RENTAL and as range the class PERSON.

Fig. 12 OFD of the Volley organisation

The OFD is derived from this extended Venn Diagram: it consists of classes and of
mappings between them. The classes are either object classes (i.e. sets of concrete
objects of the same type) or value classes (i.e. sets of abstract objects of the same
type, cf. FI theory [1]). The shape of a set or class in an OFD is a roundangle (the
name is a contraction of “rounded rectangle”). The mappings between these classes
represent property types or attribute types.

Property types are indicated by directed lines between classes. As an example in
Fig. 12, the property type ‘the member of [membership] is [person]’ is a function that
maps the class MEMBERSHIP to the class PERSON. One should imagine that the
line between the roundangles represents the bunch of connections between elements
in MEMBERSHIP and elements in PERSON. The “>” indicates that MEMBERSHIP
is the domain of the function and PERSON the range.

Attribute types are indicated in a simpler way. This is possible because they are
always pure (mathematical) functions, i.e. functions of which the cardinality range at
the domain side is 0..*, and at the range side 1..1. The name of the attribute type is
written in the roundangle of the class that is its domain. To the right of it, the name of
the value class that is the range is written, between “{“ and “}”. The name of an ob-
ject class and the list of attribute types that have this object class as domain, is separ-
ated by a dotted line.

Production event types are indicated by diamonds, the universal symbol of produc-
tion (cf. PSI theory in [1]). They are expressed as (mostly) unary predicates concern-
ing an entity type or class. For example, the event type ‘the first fee of [membership]

MEMBERSHIP PERSON

02

day of birth {DAY}

amount paid {MONEY}

PAID MEMBERSHIP {YEAR}

minimal age {NUMBER}
annual fee {MONEY}
max members {NUMBER}

the member of
>

[membership] is [person]

the first fee of
[membership] is paid

01 [membership]
is started

the payer of
>

[membership] is [person]
starting day {DAY}

STARTED MEMBERSHIP

The DEMO Specification Language v4.6.124

is paid’ concerns the entity type membership (or the object class MEMBERSHIP). An
event type in the FM is identical to a product kind in the CM. Therefore, the numeral
part of the product kind identifier (e.g. 02) is written in the diamond.

Fig. 13 part of the OFD of the GloLog organisation

In Fig. 13 a part of the OFD of the GloLog organisation ([1], Chap. 18) is exhibited
in order to show how sets are expressed in an OFD. In the example, we need the class
SET OF SALE (the extension of ‘set of sale’) as the range of the property ‘contains’,
which has as domain PURCHASE. This class can graphically be defined by drawing a
larger roundangle around the roundangle of SALE. The inverse of set of is member
of. Thus, a sale is a member of a purchase. Another example of the use of this con-
struct is the schema of the FM in Fig. 16.

Derived entity types can often be specified graphically, as is done in Fig. 12 for
‘started membership’ and ‘paid membership’. They allow precise specifications of the
attribute types ‘starting day’ and ‘amount paid’: both are functions with as domain the
object classes STARTED MEMBERSHIP and PAID MEMBERSHIP respectively.
Standard value classes like DAY and MONEY are assumed to be implicitly present in
every OFD (cf. Sec. 2.3). The value class YEAR is explicitly included in the OFD in
Fig. 12 because of the attribute types (that have to be specified) that have YEAR as
their domain: ‘minimal age’, ‘annual fee ‘ and ‘max members’.

An OFD also exhibits the existence laws that can conveniently be specified graph-
ically. For example, the OFD in Fig. 12 shows that the domain of the property type
‘the member of [membership] is [person]’ is the class MEMBERSHIP and that the
range is PERSON. In addition it shows that every membership has exactly one person
as its member, whereas a person can be member in 0, 1 or more memberships. This
follows from the (default) cardinality range. Existence laws that cannot be specified
graphically, must be specified textually.

External object classes, like PERSON, are coloured light-grey. It means that per-
sons are created outside the focus of the SoI. But it must be possible to inspect their
existence and to use their properties or attributes, like the day of birth. All standard
value classes are external, as discussed before, and thus also coloured light-grey. For
the complete legend of the OFD, the reader is referred to Sec. 6.3.3, since the graph-
ical formalism of the language GOSL presented there, is identical to the graphical
formalism of the OFD. Fig. 16 presents the meta schema of the FM. As one may ex-
pect, it is identical to the general meta schema (cf. MU theory in [1]).

[sale]
is completed

SALE
the client of
<

[sale] is [client]
CLIENT

ARTICLE
the article of

<
[sale] is [article]

PURCHASE

[sale]
is transported

[purchase]
is completed

[purchase]
is loaded

[purchase] contains
<

[set of sale]

01 10 02 03

[purchase]
is shipped

[purchase]
is released17 07

25

As said in the introduction, derived fact types (of all kinds) that cannot be specified
graphically, must be specified textually. As follows from the CUT in Table 4 and the
OFD in Fig. 12, there are three attribute types in the case Volley that have to be spe-
cified textually. It is done in Fig. 14. Days are values in the Julian time dimension (cf.
Table 1). So, the age of a person is expressed in the number of days that the person
exists. If needed, it can be transformed to years in the Gregorian calendar or in any
other calendar (cf. Sec. 2.4). Fig. 14 also contains the existence laws that apply to
Volley. They are the declarative counterparts of the (imperative) business rules [1] or
action rules that are discussed in Sec. 4. In other words, action rules, or imperative
business rules in general, are the operationalisation of declarative business rules,
which are basically first order logical formulas concerning the production world of an
organisation.

Fig. 14 Derived Fact Specifications and Existence Laws of the Volley organisation

7 Appendix
Hereafter, Figs. 15 thru 25 are presented. They constitute an appendix to the docu-
ment, because inserting them in the text would worsen the readability.

Derived Fact Specifications
the age of [person] on [day] ≡ [day] minus the day of birth of [person]
the number of members on [day] ≡ the cardinality of STARTED MEMBERSHIP on [day]
the first fee of [membership] ≡ (12 minus (the month of the starting day of [membership]) +1) times the annual
fee in the year of the starting day of [membership]

Existence Laws (Declarative Business Rules)
[membership] is started on [day] implies that [day] is the first day of some [month] and [month] is equal to or
greater than «current month»
[membership] is started on [day] implies that the age of the member of [membership] is equal to or greater
than the minimal age in the year of [day]
[membership] is started on [day] implies that the number of members on [day] is less than or equal to the max
members in the year of [day]

The DEMO Specification Language v4.6.126

Fig. 15 Combined schema of the CM, AM, and PM

The OFD above is an expression of a schema in GOSL (cf. MU theory in [1]) that
specifies the state space of the ‘world’ that is covered by the CM, the AM and the PM
of an organisation.

Recall that the default cardinality range of a property type at the domain side is 0..*
and at the range side 1..1. Default values are commonly not indicated in a schema.

AC
TO

R
RO

LE

tr
an

sa
ct

io
n

so
rt

[S
O

RT
]

<
th

er
e

is
 a

n
in

iti
at

or
 li

nk
fr

om
 [

ar
]

to
 [

tk
]

<
th

er
e

is
 a

n
ac

ce
ss

 li
nk

fr
om

 [
ar

]
to

 [
tk

]

th
e

pr
od

uc
t

ki
nd

<
of

 [
tk

]
is

 [
pk

]
TR

AN
SA

CT
IO

N
KI

N
D

CO
M

PO
SI

TE
TR

AN
SA

CT
O

R
RO

LE

1.
.1

1.
.* 0.
.*

PR
O

D
U

CT
 K

IN
D

TR
AN

SA
CT

O
R

RO
LE*

>
th

er
e

is
 a

 w
ai

t
lin

k
fr

om
 [

tk
]

to
 [

ar
]

0.
.*

<
th

er
e

is
 a

n
ex

ec
ut

or
 li

nk
fr

om
 [

ar
]

to
 [

tk
]1.

.1

M
U

LT
IP

LE
TR

AN
SA

CT
IO

N
KI

N
D [t

k]
 is

 p
ar

t
of

 [
m

tk
]

>

0.
.*

1.
.*

[t
ar

]
is

 p
ar

t
of

 [
ct

ar
]

>

1.
.*

0.
.*

W
O

RK
IN

ST
RU

CT
IO

N

[w
i]

ap
pl

ie
s

to
 [

pk
]

>

1.
.1

AC
TI

O
N

RU
LE

[a
r]

 a
pp

lie
s

to
 [

tk
sk

]

>

0.
.*

G
EN

ER
AL

 S
TE

P
KI

N
D

* RE
VO

KE
PA

TT
ER

N
ST

EP
 K

IN
D

<
th

er
e

is
 a

 r
ev

er
si

on
lin

k
fr

om
 [

rp
sk

]
to

 [
sp

sk
]

ST
AN

D
AR

D
PA

TT
ER

N
ST

EP
 K

IN
Dth

er
e

is
 a

 c
on

di
tio

na
l l

in
k

fr
om

[s
ps

k]
 t

o
[r

ps
k]

> X

0.
.*

0.
.*

TR
AN

SA
CT

IO
N

 K
IN

D
ST

EP
 K

IN
D >

th
er

e
is

 a
 w

ai
t

lin
k

fr
om

 [
tk

sk
]

to
 [

tk
sk

]

0.
.*

+

P-
FA

CT
 T

YP
E

fa
ct

s
of

 t
yp

e
[p

ft
]

ar
e

us
ed

 in
 p

er
fo

rm
in

g
st

ep
s

of
 k

in
d

[t
ks

k]
>

>
fa

ct
s

of
 t

yp
e

[p
ft

]
ar

e
cr

ea
te

d
in

 p
er

fo
rm

in
g

st
ep

s
of

 k
in

d
[t

ks
k]

th
er

e
is

 a
 r

es
po

ns
e

lin
k

fr
om

 [
tk

sk
]

to
 [

tk
sk

]
>

fa
ct

s
of

 t
yp

e
[p

ft
]

ar
e

co
nt

ai
ne

d
in

tr

an
sa

ct
io

n
ba

nk
 [

tk
]

>

Sc
he

m
a

of
 th

e
CM

+
AM

+
PM

ex
pr

es
se

d
in

 G
O

SL

27

Fig. 16 Meta schema of the FM

The OFD above is an expression of the meta schema of the state space of the produc-
tion world of an organisation, in GOSL. An example of a state space schema is the
one that is exhibited in Fig. 12.

Note that the property types are formulated in a concise form: the references to the
elements in the domain and the range are omitted.

Recall that the default cardinality range of a property type at the domain side is 0..*
and at the range side 1..1. Default values are commonly not indicated in a schema.

M
et

a
Sc

he
m

a
of

 th
e

FM
ex

pr
es

se
d

in
 G

OS
L

PR
OP

ER
TY

 T
YP

E

EN
TI

TY
TY

PE
<

ra
ng

e

<
do

m
ai

n
m

in
ca

rd
 d

om
ai

n
{N

UM
BE

R}
m

ax
ca

rd
 d

om
ai

n
{N

UM
BE

R}
m

in
ca

rd
 ra

ng
e

{N
UM

BE
R}

m
ax

ca
rd

 ra
ng

e
{N

UM
BE

R}
co

nc
er

ns
>

+

P-
FA

CT
 T

YP
E

ex
clu

de
s

>
0.
.*

ha
s

en
de

d
to

 e
xis

t

ha
s

st
ar

te
d

to
 e

xis
t

EV
EN

T
TY

PE

ev
en

t t
im

e
{J

UL
IA

N}

AT
TR

IB
UT

E
TY

PE
VA

LU
E

TY
PE

<
ra

ng
e

>
do

m
ai

n

DE
RI

VE
D

P-
FA

CT
TY

PE
0.
.1

DE
CL

AR
ED

P-
FA

CT
TY

PE

0.
.1

0.
.1

>
is

a
sp

ec
ia

lis
at

io
n

of

ty
pe

 s
or

t
{d

ec
la

re
d,

 d
er

ive
d}

X

>
is

a
ge

ne
ra

lis
at

io
n

of

>
is

an
 a

gg
re

ga
tio

n
of

The DEMO Specification Language v4.6.128

Fig. 17 Definition of the Coordination Structure Diagram (CSD)

The blue coloured and bold-lined parts above collectively define the (semantic) con-
tents of a Coordination Structure Diagram (CSD). Thus, every CSD represents the
existence, in the chosen SoI, of a number of transaction kinds, actor roles (and con-
sequently transactor roles) as well as composite transactor roles and multiple transac-
tion kinds. In addition, it represents the existence of a number of executor links, initi-
ator links, access links and wait links. Note that a transactor role is the combination of
a transaction kind and the actor role that has its executor role.

The instances of the property type ‘is part of’ (which exist between transaction
kinds and multiple transaction kinds, as well as between transactor roles and compos-
ite transactor roles) may be implicitly given. It is important yet to know that a mul-
tiple transaction kind is a collection of transaction kinds, and that a composite trans-
actor role is a collection of transactor roles. Fig. 5 exhibits an example of a CSD.

AC
TO

R
RO

LE

tr
an

sa
ct

io
n

so
rt

[S
O

RT
]

<
th

er
e

is
 a

n
in

iti
at

or
 li

nk
fr

om
 [

ar
]

to
 [

tk
]

th
e

pr
od

uc
t

ki
nd

<
of

 [
tk

]
is

 [
pk

]
TR

AN
SA

CT
IO

N
KI

N
D

CO
M

PO
SI

TE
TR

AN
SA

CT
O

R
RO

LE

1.
.1

1.
.* 0.
.*

PR
O

D
U

CT
 K

IN
D

TR
AN

SA
CT

O
R

RO
LE*

0.
.*

<
th

er
e

is
 a

n
ex

ec
ut

or
 li

nk
fr

om
 [

ar
]

to
 [

tk
]1.

.1

M
U

LT
IP

LE
TR

AN
SA

CT
IO

N
KI

N
D [t

k]
 is

 p
ar

t
of

 [
m

tk
]

1.
.*

[t
ar

]
is

 p
ar

t
of

 [
ct

ar
]

>

0.
.*

W
O

RK
IN

ST
RU

CT
IO

N

[w
i]

ap
pl

ie
s

to
 [

pk
]

>

1.
.1

AC
TI

O
N

RU
LE

[a
r]

 a
pp

lie
s

to
 [

tk
sk

]

>

0.
.*

G
EN

ER
AL

 S
TE

P
KI

N
D

* RE
VO

KE
PA

TT
ER

N
ST

EP
 K

IN
D

<
th

er
e

is
 a

 r
ev

er
si

on
lin

k
fr

om
 [

rp
sk

]
to

 [s
ps

k]

ST
AN

D
AR

D
PA

TT
ER

N
ST

EP
 K

IN
Dth

er
e

is
 a

 c
on

di
tio

na
l l

in
k

fr
om

[s
ps

k]
 t

o
[r

ps
k]

> X

0.
.*

0.
.*

TR
AN

SA
CT

IO
N

 K
IN

D
ST

EP
 K

IN
D >

th
er

e
is

 a
 w

ai
t

lin
k

fr
om

 [
tk

sk
]

to
 [

tk
sk

]

0.
.*

P-
FA

CT
 T

YP
E

fa
ct

s
of

 t
yp

e
[p

ft
]

ar
e

us
ed

 in
 p

er
fo

rm
in

g
st

ep
s

of
 k

in
d

[t
ks

k]
>

>
fa

ct
s

of
 t

yp
e

[p
ft

]
ar

e
cr

ea
te

d
in

 p
er

fo
rm

in
g

st
ep

s
of

 k
in

d
[t

ks
k]

th
er

e
is

 a
 r

es
po

ns
e

lin
k

fr
om

 [
tk

sk
]

to
 [

tk
sk

]
>

fa
ct

s
of

 t
yp

e
[p

ft
]

ar
e

co
nt

ai
ne

d
in

tr

an
sa

ct
io

n
ba

nk
 [

tk
]

>

>

Co
or
di
na
tio
n

St
ru
ct
ur
e

D
ia
gr
am

0.
.*

1.
.*

+

<
th

er
e

is
 a

n
ac

ce
ss

 li
nk

fr
om

 [
ar

]
to

 [t
k]

>
th

er
e

is
 a

 w
ai

t
lin

k
fr

om
 [

tk
]

to
 [

ar
]

29

Fig. 18 Position of the action rules and the work instructions

The meaning of the blue coloured and bold-lined parts above is that every action rule
(like the example rule in Sec. 4) applies to one transaction kind step kind, e.g. TK04/
da in the essential model of the Rent-A-Car organisation (cf. [1], Chap. 15), but there
may be several action rules that apply to the same transaction kind step kind (or co-
ordination event kind). They differ however in the contained while clauses. Action
rules are expressed in Action Rule Specifications (ARS).

The meaning of the dark blue coloured and bold-lined parts above is that every
work instruction applies to one product kind, and vice versa. In other words, work
instructions are product specific. Work instructions are expressed in Work Instruction
Specifications (WIS).

AC
TO

R
RO

LE

tra
ns

ac
tio

n
so

rt
[S

OR
T]

<
th

er
e

is
an

 in
iti

at
or

 li
nk

fro
m

 [a
r]

 to
 [t

k]

th
e

pr
od

uc
t k

in
d

<
of

 [
tk

] i
s

[p
k]

TR

AN
SA

CT
IO

N
KI

ND

CO
M

PO
SI

TE
TR

AN
SA

CT
OR

RO
LE

1.
.1

1.
.* 0.
.*

PR
OD

UC
T

KI
ND

TR
AN

SA
CT

OR
RO

LE*

0.
.*

<
th

er
e

is
an

 e
xe

cu
to

r l
in

k
fro

m
 [a

r]
 to

 [t
k]

1.
.1

M
UL

TI
PL

E
TR

AN
SA

CT
IO

N
KI

ND

[t
k]

 is
 p

ar
t o

f [
m

tk
]

>

0.
.*

1.
.*

[ta
r]

 is
 p

ar
t o

f [
ct

ar
]

>

1.
.*

0.
.*

W
OR

K
IN

ST
RU

CT
IO

N

1.
.1

AC
TI

ON
RU

LE

[a
r]

 a
pp

lie
s

to
 [t

ks
k]

>

0.
.*

GE
NE

RA
L

ST
EP

 K
IN

D

* RE
VO

KE
PA

TT
ER

N
ST

EP
 K

IN
D

<
th

er
e

is
a

re
ve

rs
io

n
lin

k
fro

m
 [r

ps
k]

 to
 [s

ps
k]

ST
AN

DA
RD

PA
TT

ER
N

ST
EP

 K
IN

Dth
er

e
is

a
co

nd
iti

on
al

 li
nk

 fr
om

[s
ps

k]
 to

 [r
ps

k]
> X

0.
.*

0.
.*

TR
AN

SA
CT

IO
N

KI
ND

ST
EP

 K
IN

D >
th

er
e

is
a

w
ai

t l
in

k
fro

m
 [

tk
sk

] t
o

[t
ks

k]
0.

.*

P-
FA

CT
 T

YP
E

fa
ct

s
of

 ty
pe

 [p
ft]

 a
re

us
ed

 in
 p

er
fo

rm
in

g
st

ep
s

of
 k

in
d

[tk
sk

]
>

>
fa

ct
s

of
 ty

pe
 [p

ft]
 a

re
cr

ea
te

d
in

 p
er

fo
rm

in
g

st
ep

s
of

 k
in

d
[tk

sk
]

th
er

e
is

a
re

sp
on

se
 li

nk
 fr

om
 [t

ks
k]

 to
 [t

ks
k]

>

fa
ct

s
of

 ty
pe

 [p
ft]

 a
re

co

nt
ai

ne
d

in

tra
ns

ac
tio

n
ba

nk
 [t

k]
>

Ac
tio
n

Ru
le

Sp
ec
ifi
ca
tio
ns

>

W
or
k

In
st
ru
ct
io
n

Sp
ec
ifi
ca
tio
ns

[w
i]

ap
pl

ie
s

to
 [

pk
]

+

<
th

er
e

is
an

 a
cc

es
s

lin
k

fro
m

 [
ar

] t
o

[tk
]

>
th

er
e

is
a

w
ai

t
lin

k
fro

m
 [t

k]
 to

 [a
r]

The DEMO Specification Language v4.6.130

Fig. 19 Definition of the Process Structure Diagram (PSD)

The blue coloured and bold-lined parts above collectively define the (semantic) con-
tents of a Process Structure Diagram (PSD). Thus, every PSD represents the exist-
ence, in the chosen SoI, of a number of transaction kinds and actor roles, as well as
transaction kind step kinds, where every transaction kind step kind (e.g. TK04/da) is
defined as the aggregation of a general step kind (e.g. ‘da’) and a transaction kind
(e.g. TK01). In addition, it represents the existence of a number of executor links and
initiator links, as well as a number of wait links between transaction kind step kinds.
Fig. 9 exhibits an example of a PSD.

AC
TO

R
RO

LE

tr
an

sa
ct

io
n

so
rt

[S
O

RT
]

<
th

er
e

is
 a

n
in

iti
at

or
 li

nk
fr

om
 [

ar
]

to
 [

tk
]

th
e

pr
od

uc
t

ki
nd

<
of

 [
tk

]
is

 [
pk

]
TR

AN
SA

CT
IO

N
KI

N
D

CO
M

PO
SI

TE
TR

AN
SA

CT
O

R
RO

LE

1.
.1

1.
.* 0.
.*

PR
O

D
U

CT
 K

IN
D

TR
AN

SA
CT

O
R

RO
LE*

0.
.*

<
th

er
e

is
 a

n
ex

ec
ut

or
 li

nk
fr

om
 [

ar
]

to
 [

tk
]1.

.1

M
U

LT
IP

LE
TR

AN
SA

CT
IO

N
KI

N
D [t

k]
 is

 p
ar

t
of

 [
m

tk
]

>

0.
.*

1.
.*

[t
ar

]
is

 p
ar

t
of

 [
ct

ar
]

>

1.
.*

0.
.*

W
O

RK
IN

ST
RU

CT
IO

N

[w
i]

ap
pl

ie
s

to
 [

pk
]

>

1.
.1

AC
TI

O
N

RU
LE

[a
r]

 a
pp

lie
s

to
 [

tk
sk

]

>

0.
.*

G
EN

ER
AL

 S
TE

P
KI

N
D

* RE
VO

KE
PA

TT
ER

N
ST

EP
 K

IN
D

<
th

er
e

is
 a

 r
ev

er
si

on
lin

k
fr

om
 [

rp
sk

]
to

 [s
ps

k]

ST
AN

D
AR

D
PA

TT
ER

N
ST

EP
 K

IN
Dth

er
e

is
 a

 c
on

di
tio

na
l l

in
k

fr
om

[s
ps

k]
 t

o
[r

ps
k]

> X

0.
.*

0.
.*

TR
AN

SA
CT

IO
N

 K
IN

D
ST

EP
 K

IN
D

0.
.*

*

P-
FA

CT
 T

YP
E

fa
ct

s
of

 t
yp

e
[p

ft
]

ar
e

us
ed

 in
 p

er
fo

rm
in

g
st

ep
s

of
 k

in
d

[t
ks

k]
>

>
fa

ct
s

of
 t

yp
e

[p
ft

]
ar

e
cr

ea
te

d
in

 p
er

fo
rm

in
g

st
ep

s
of

 k
in

d
[t

ks
k]fa
ct

s
of

 t
yp

e
[p

ft
]

ar
e

co
nt

ai
ne

d
in

tr

an
sa

ct
io

n
ba

nk
 [

tk
]

>

Pr
oc
es
s

St
ru
ct
ur
e

D
ia
gr
am

>
th

er
e

is
 a

 w
ai

t
lin

k
fr

om
 [

tk
sk

]
to

 [
tk

sk
]

th
er

e
is

 a
 r

es
po

ns
e

lin
k

fr
om

 [
tk

sk
]

to
 [

tk
sk

]
> +

<
th

er
e

is
 a

n
ac

ce
ss

 li
nk

fr
om

 [
ar

]
to

 [t
k]

>
th

er
e

is
 a

 w
ai

t
lin

k
fr

om
 [

tk
]

to
 [

ar
]

31

Fig. 20 Definition of the Transaction Process Diagram (TPD)

The blue coloured and bold-lined parts above collectively define the (semantic) con-
tents of a Transaction Process Diagram (TPD). Fig. 6 exhibits the complete transac-
tion pattern (CTP) expressed in a TPD. A typical use of this TPD is discussed in the
case Fixit (cf. [1], Chap. 13). Another typical use is to show precisely the interrela-
tionships of transactions. An example of this way of using the TPD is exhibited in
Fig. 10.

©
20

20
sl

id
e

36
D

EM
O

SL
-4

.0
.5

AC
TO

R
RO

LE

tr
an

sa
ct

io
n

so
rt

[S
O

RT
]

<
th

er
e

is
 a

n
in

iti
at

or
 li

nk
fr

om
 [

ar
]

to
 [

tk
]

th
e

pr
od

uc
t k

in
d

<
of

 [
tk

]
is

 [
pk

]
TR

AN
SA

CT
IO

N
KI

N
D

CO
M

PO
SI

TE
TR

AN
SA

CT
O

R
RO

LE

1.
.1

1.
.* 0.
.*

PR
O

D
UC

T
KI

N
D

TR
AN

SA
CT

O
R

RO
LE*

0.
.*

<
th

er
e

is
 a

n
ex

ec
ut

or
 li

nk
fr

om
 [

ar
]

to
 [

tk
]1.

.1

M
UL

TI
PL

E
TR

AN
SA

CT
IO

N
KI

N
D [t

k]
 is

 p
ar

t o
f [

m
tk

]

>

0.
.*

1.
.*

[t
ar

]
is

 p
ar

t o
f [

ct
ar

]

>

1.
.*

0.
.*

W
O

RK
IN

ST
RU

CT
IO

N

[w
i]

ap
pl

ie
s

to
 [

pk
]

>

1.
.1

AC
TI

O
N

RU
LE

[a
r]

 a
pp

lie
s

to
 [

tk
sk

]

>

0.
.*

G
EN

ER
AL

 S
TE

P
KI

N
D

* RE
VO

KE
PA

TT
ER

N
ST

EP
 K

IN
D

ST
AN

D
AR

D
PA

TT
ER

N
ST

EP
 K

IN
D

X

0.
.*

0.
.*

TR
AN

SA
CT

IO
N

 K
IN

D
ST

EP
 K

IN
D

0.
.*

P-
FA

CT
 T

YP
E

fa
ct

s
of

 ty
pe

 [
pf

t]
 a

re
us

ed
 in

 p
er

fo
rm

in
g

st
ep

s
of

 k
in

d
[t

ks
k]

>

>
fa

ct
s

of
 ty

pe
 [

pf
t]

 a
re

cr
ea

te
d

in
 p

er
fo

rm
in

g
st

ep
s

of
 k

in
d

[t
ks

k]fa
ct

s
of

 ty
pe

 [
pf

t]
 a

re

co
nt

ai
ne

d
in

tr

an
sa

ct
io

n
ba

nk
 [

tk
]

>

Tr
an
sa
ct
io
n

Pr
oc
es
s

D
ia
gr
am

th
er

e
is

 a
 r

es
po

ns
e

lin
k

fr
om

 [
tk

sk
]

to
 [

tk
sk

]
>

>
th

er
e

is
 a

 w
ai

t l
in

k
fr

om
 [

tk
sk

]
to

 [
tk

sk
]

th
er

e
is

 a
 c

on
di

tio
na

l l
in

k
fr

om
[s

ps
k]

 to
 [

rp
sk

]
> <

th
er

e
is

 a
 r

ev
er

si
on

lin
k

fr
om

 [
rp

sk
]

to
 [

sp
sk

]

+

<
th

er
e

is
 a

n
ac

ce
ss

 li
nk

fr
om

 [
ar

]
to

 [
tk

]

>
th

er
e

is
 a

 w
ai

t
lin

k
fr

om
 [

tk
]

to
 [

ar
]

The DEMO Specification Language v4.6.132

Fig. 21 Definition of the Transactor Product Table (TPT)

The purple coloured and bold-lined parts above collectively define the (semantic)
contents of a Transactor Product Table (TPT). Thus, every TPT represents the exist-
ence, in the chosen SoI, of a number of transaction kinds, actor roles, and product
kinds. In addition, it expresses which actor role is the executor role of a transaction
kind, and which product kind is associated with the transaction kind. Table 2 exhibits
an example of a TPT.

AC
TO

R
RO

LE

tr
an

sa
ct

io
n

so
rt

[S
O

RT
]

<
th

er
e

is
 a

n
in

iti
at

or
 li

nk
fr

om
 [

ar
]

to
 [

tk
]

th
e

pr
od

uc
t

ki
nd

<
of

 [
tk

]
is

 [
pk

]
TR

AN
SA

CT
IO

N
KI

N
D

CO
M

PO
SI

TE
TR

AN
SA

CT
O

R
RO

LE

1.
.1

1.
.*

0.
.*

PR
O

D
U

CT
 K

IN
D

TR
AN

SA
CT

O
R

RO
LE*

0.
.*

<
th

er
e

is
 a

n
ex

ec
ut

or
 li

nk
fr

om
 [

ar
]

to
 [

tk
]1.

.1

M
U

LT
IP

LE
TR

AN
SA

CT
IO

N
KI

N
D [t

k]
 is

 p
ar

t
of

 [
m

tk
]

>

0.
.*

1.
.*

[t
ar

]
is

 p
ar

t
of

 [
ct

ar
]

>

1.
.*

0.
.*

W
O

RK
IN

ST
RU

CT
IO

N

[w
i]

 a
pp

lie
s

to
 [

pk
]

>

1.
.1

AC
TI

O
N

RU
LE

[a
r]

 a
pp

lie
s

to
 [

tk
sk

]

>

0.
.*

G
EN

ER
AL

 S
TE

P
KI

N
D

* RE
VO

KE
PA

TT
ER

N
ST

EP
 K

IN
D

<
th

er
e

is
 a

 r
ev

er
si

on
lin

k
fr

om
 [r

ps
k]

 t
o

[s
ps

k]

ST
AN

D
AR

D
PA

TT
ER

N
ST

EP
 K

IN
Dth

er
e

is
 a

 c
on

di
tio

na
l l

in
k

fr
om

[s
ps

k]
 t

o
[r

ps
k]

> X

0.
.*

0.
.*

TR
AN

SA
CT

IO
N

 K
IN

D
ST

EP
 K

IN
D >

th
er

e
is

 a
 w

ai
t

lin
k

fr
om

 [
tk

sk
]

to
 [

tk
sk

]

0.
.*

P-
FA

CT
 T

YP
E

fa
ct

s
of

 t
yp

e
[p

ft
]

ar
e

us
ed

 in
 p

er
fo

rm
in

g
st

ep
s

of
 k

in
d

[t
ks

k]
>

>
fa

ct
s

of
 t

yp
e

[p
ft

]
ar

e
cr

ea
te

d
in

 p
er

fo
rm

in
g

st
ep

s
of

 k
in

d
[t

ks
k]

th
er

e
is

 a
 r

es
po

ns
e

lin
k

fr
om

 [
tk

sk
]

to
 [

tk
sk

]
>

fa
ct

s
of

 t
yp

e
[p

ft
]

ar
e

co
nt

ai
ne

d
in

tr

an
sa

ct
io

n
ba

nk
 [

tk
]

>

Tr
an
sa
ct
or

Pr
od
uc
t

Ta
bl
e

+

<
th

er
e

is
 a

n
ac

ce
ss

 li
nk

fr
om

 [
ar

]
to

 [
tk

]

>
th

er
e

is
 a

 w
ai

t
lin

k
fr

om
 [t

k]
 t

o
[a

r]

33

Fig. 22 Definition of the Bank Contents Table (BCT)

The purple coloured and bold-lined parts above collectively define the (semantic)
contents of a Bank Contents Table (BCT). Thus, every BCT represents the existence,
in the chosen SoI, of a number of transaction kinds, multiple transaction kinds, and P-
fact types. In addition, it represents for every P-fact type in which transaction kind
(now interpreted as a transaction bank) instances of it are contained.

The instances of the property type ‘is part of’ (between transaction kind and mul-
tiple transaction kind) may be implicitly given. It is important yet to understand that a
multiple transaction kind is a collection of transaction kinds. Table 3 contains an ex-
ample of a BCT.

AC
TO

R
RO

LE

tr
an

sa
ct

io
n

so
rt

[S
O

RT
]

<
th

er
e

is
 a

n
in

iti
at

or
 li

nk
fr

om
 [

ar
]

to
 [

tk
]

th
e

pr
od

uc
t

ki
nd

<
of

 [
tk

]
is

 [
pk

]
TR

AN
SA

CT
IO

N
KI

N
D

CO
M

PO
SI

TE
TR

AN
SA

CT
O

R
RO

LE

1.
.1

1.
.*

0.
.*

PR
O

D
U

CT
 K

IN
D

TR
AN

SA
CT

O
R

RO
LE*

0.
.*

<
th

er
e

is
 a

n
ex

ec
ut

or
 li

nk
fr

om
 [

ar
]

to
 [

tk
]1.

.1

M
U

LT
IP

LE
TR

AN
SA

CT
IO

N
KI

N
D [t

k]
 is

 p
ar

t
of

 [
m

tk
]

>

[t
ar

]
is

 p
ar

t
of

 [
ct

ar
]

>

1.
.*

0.
.*

W
O

RK
IN

ST
RU

CT
IO

N

[w
i]

 a
pp

lie
s

to
 [

pk
]

>

1.
.1

AC
TI

O
N

RU
LE

[a
r]

 a
pp

lie
s

to
 [

tk
sk

]

>

0.
.*

G
EN

ER
AL

 S
TE

P
KI

N
D

* RE
VO

KE
PA

TT
ER

N
ST

EP
 K

IN
D

<
th

er
e

is
 a

 r
ev

er
si

on
lin

k
fr

om
 [r

ps
k]

 t
o

[s
ps

k]

ST
AN

D
AR

D
PA

TT
ER

N
ST

EP
 K

IN
Dth

er
e

is
 a

 c
on

di
tio

na
l l

in
k

fr
om

[s
ps

k]
 t

o
[r

ps
k]

> X

0.
.*

0.
.*

TR
AN

SA
CT

IO
N

 K
IN

D
ST

EP
 K

IN
D >

th
er

e
is

 a
 w

ai
t

lin
k

fr
om

 [
tk

sk
]

to
 [

tk
sk

]

0.
.*

P-
FA

CT
 T

YP
E

fa
ct

s
of

 t
yp

e
[p

ft
]

ar
e

us
ed

 in
 p

er
fo

rm
in

g
st

ep
s

of
 k

in
d

[t
ks

k]
>

>
fa

ct
s

of
 t

yp
e

[p
ft

]
ar

e
cr

ea
te

d
in

 p
er

fo
rm

in
g

st
ep

s
of

 k
in

d
[t

ks
k]

th
er

e
is

 a
 r

es
po

ns
e

lin
k

fr
om

 [
tk

sk
]

to
 [t

ks
k]

>

fa
ct

s
of

 t
yp

e
[p

ft
]

ar
e

co
nt

ai
ne

d
in

tr

an
sa

ct
io

n
ba

nk
 [

tk
]

>

Ba
nk

Co
nt
en
ts

Ta
bl
e

0.
.*

1.
.*

+

<
th

er
e

is
 a

n
ac

ce
ss

 li
nk

fr
om

 [
ar

]
to

 [
tk

]

>
th

er
e

is
 a

 w
ai

t
lin

k
fr

om
 [

tk
]

to
 [

ar
]

The DEMO Specification Language v4.6.134

Fig. 23 Definition of the Bank Access Table (BAT

The purple coloured and bold-lined parts above collectively define the (semantic)
contents of a Bank Access Table (BAT). Thus, a BAT represents the existence, in the
chosen SoI, of transaction kinds, multiple transaction kinds, and actor roles, as well as
of access links from actor roles to transaction banks, including the executor role and
the initiator roles. To clarify this, the entity type ‘composite actor role’ is added to the
schema (which can be fully deduced from the composite transactor role).

A BAT represents the interstriction structure of an SoI, as an alternative to drawing
access links in the CSD. Access links may also exist between actor roles and multiple
transaction kinds, and between composite actor roles and (multiple) transaction kinds.
An example of a BAT is presented in Table 4.

AC
TO

R
RO

LE

tra
ns

ac
tio

n
so

rt
[S

OR
T]

<
th

er
e

is
an

 in
iti

at
or

 li
nk

fro
m

 [a
r]

 to
 [t

k]

th
e

pr
od

uc
t k

in
d

<
of

 [
tk

] i
s

[p
k]

TR

AN
SA

CT
IO

N
KI

ND

CO
M

PO
SI

TE
TR

AN
SA

CT
OR

RO
LE

1.
.1

1.
.* 0.
.*

PR
OD

UC
T

KI
ND

TR
AN

SA
CT

OR
RO

LE*

0.
.*1.
.1

[t
k]

 is
 p

ar
t o

f [
m

tk
]

>

1.
.*

[ta
r]

 is
 p

ar
t o

f [
ct

ar
]

>

1.
.*

0.
.*

W
OR

K
IN

ST
RU

CT
IO

N

[w
i]

ap
pl

ie
s

to
 [

pk
]

>

1.
.1

AC
TI

ON
RU

LE

[a
r]

 a
pp

lie
s

to
 [t

ks
k]

>

0.
.*

GE
NE

RA
L

ST
EP

 K
IN

D

* RE
VO

KE
PA

TT
ER

N
ST

EP
 K

IN
D

<
th

er
e

is
a

re
ve

rs
io

n
lin

k
fro

m
 [r

ps
k]

 to
 [s

ps
k]

ST
AN

DA
RD

PA
TT

ER
N

ST
EP

 K
IN

Dth
er

e
is

a
co

nd
iti

on
al

 li
nk

 fr
om

[s
ps

k]
 to

 [r
ps

k]
> X

0.
.*

0.
.*

TR
AN

SA
CT

IO
N

KI
ND

ST
EP

 K
IN

D >
th

er
e

is
a

w
ai

t l
in

k
fro

m
 [

tk
sk

] t
o

[t
ks

k]
0.

.*

P-
FA

CT
 T

YP
E

fa
ct

s
of

 ty
pe

 [p
ft]

 a
re

us
ed

 in
 p

er
fo

rm
in

g
st

ep
s

of
 k

in
d

[tk
sk

]
>

>
fa

ct
s

of
 ty

pe
 [p

ft]
 a

re
cr

ea
te

d
in

 p
er

fo
rm

in
g

st
ep

s
of

 k
in

d
[tk

sk
]

th
er

e
is

a
re

sp
on

se
 li

nk
 fr

om
 [t

ks
k]

 to
 [t

ks
k]

>

fa
ct

s
of

 ty
pe

 [p
ft]

 a
re

co

nt
ai

ne
d

in

tra
ns

ac
tio

n
ba

nk
 [t

k]
>

M
UL

TI
PL

E
TR

AN
SA

CT
IO

N
KI

ND

0.
.*

Ba
nk

Ac
ce
ss

Ta
bl
e

CO
M

PO
SI

TE
AC

TO
R

RO
LE

[a
r]

 is
 p

ar
t o

f [
ca

r]

>

1.
.*

0.
.*

+

>
th

er
e

is
a

w
ai

t
lin

k
fro

m
 [t

k]
 to

 [a
r]

0.
.*

<
th

er
e

is
an

 e
xe

cu
to

r l
in

k
fro

m
 [a

r]
 to

 [t
k]

<
th

er
e

is
an

 a
cc

es
s

lin
k

fro
m

 [
ar

] t
o

[tk
]

35

Fig. 24 Definition of the Create Use Table (CUT)

The purple coloured and bold-lined parts above collectively define the (semantic)
contents of a Create Use Table (CUT). Thus, every CUT represents the existence, in
the chosen SoI, of a number of transaction kind step kinds and P-fact types. In addi-
tion, it expresses for every P-fact type, in which transaction kind step kind its in-
stances are created and in which transaction kind step kind its instances are used.
Table 5 contains an example of a CUT.

AC
TO

R
RO

LE

tr
an

sa
ct

io
n

so
rt

[S
O

RT
]

<
th

er
e

is
 a

n
in

iti
at

or
 li

nk
fr

om
 [

ar
]

to
 [

tk
]

th
e

pr
od

uc
t

ki
nd

<
of

 [
tk

]
is

 [
pk

]
TR

AN
SA

CT
IO

N
KI

N
D

CO
M

PO
SI

TE
TR

AN
SA

CT
O

R
RO

LE

1.
.1

1.
.* 0.
.*

PR
O

D
U

CT
 K

IN
D

TR
AN

SA
CT

O
R

RO
LE*

0.
.*

<
th

er
e

is
 a

n
ex

ec
ut

or
 li

nk
fr

om
 [

ar
]

to
 [

tk
]1.

.1

M
U

LT
IP

LE
TR

AN
SA

CT
IO

N
KI

N
D [t

k]
 is

 p
ar

t
of

 [
m

tk
]

>

0.
.*

1.
.*

[t
ar

]
is

 p
ar

t
of

 [
ct

ar
]

>

1.
.*

0.
.*

W
O

RK
IN

ST
RU

CT
IO

N

[w
i]

 a
pp

lie
s

to
 [

pk
]

>

1.
.1

AC
TI

O
N

RU
LE

[a
r]

 a
pp

lie
s

to
 [

tk
sk

]

>

0.
.*

G
EN

ER
AL

 S
TE

P
KI

N
D

* RE
VO

KE
PA

TT
ER

N
ST

EP
 K

IN
D

<
th

er
e

is
 a

 r
ev

er
si

on
lin

k
fr

om
 [

rp
sk

]
to

 [
sp

sk
]

ST
AN

D
AR

D
PA

TT
ER

N
ST

EP
 K

IN
Dth

er
e

is
 a

 c
on

di
tio

na
l l

in
k

fr
om

[s
ps

k]
 t

o
[r

ps
k]

> X

0.
.*

0.
.*

TR
AN

SA
CT

IO
N

 K
IN

D
ST

EP
 K

IN
D >

th
er

e
is

 a
 w

ai
t

lin
k

fr
om

 [
tk

sk
]

to
 [

tk
sk

]

0.
.*

P-
FA

CT
 T

YP
E

th
er

e
is

 a
 r

es
po

ns
e

lin
k

fr
om

 [
tk

sk
]

to
 [

tk
sk

]
>

fa
ct

s
of

 t
yp

e
[p

ft
]

ar
e

co
nt

ai
ne

d
in

tr

an
sa

ct
io

n
ba

nk
 [

tk
]

>

Cr
ea
te

Us
e

Ta
bl
e

>
fa

ct
s

of
 t

yp
e

[p
ft

]
ar

e
cr

ea
te

d
in

 p
er

fo
rm

in
g

st
ep

s
of

 k
in

d
[t

ks
k]

fa
ct

s
of

 t
yp

e
[p

ft
]

ar
e

us
ed

 in
 p

er
fo

rm
in

g
st

ep
s

of
 k

in
d

[t
ks

k]
>

+

<
th

er
e

is
 a

n
ac

ce
ss

 li
nk

fr
om

 [
ar

]
to

 [
tk

]

>
th

er
e

is
 a

 w
ai

t
lin

k
fr

om
 [t

k]
 t

o
[a

r]

The DEMO Specification Language v4.6.136

Fig. 25 Definition of the Authorisation Delegation Table (ADT)

The purple coloured and bold-lined parts above collectively define the (semantic)
contents of the Authorisation Delegation Table (ADT). Note that the object class
PERFORMER is added to the schema, to make the definition possible.

The columns of an ADT represent tasks (T), ranging from single process steps (in a
detailed ADT) to the responsibility ranges of actor roles (in a global ADT). The rows
represent the task performers (P), ranging from functionaries to complete enterprises.
An “A” at the crossing of a column and a row indicates that the performer is author-
ised to perform the task, a “D” that he/she has delegated authority. In a global ADT,
only A’s can occur since it is by definition not possible to delegate a complete actor
role (cf. PSI theory in [1]). Table 5 contains an example of a detailed ADT.

AC
TO

R
RO

LE

tr
an

sa
ct

io
n

so
rt

[S
O

RT
]

<
th

er
e

is
 a

n
in

iti
at

or
 li

nk
fr

om
 [

ar
]

to
 [

tk
]

th
e

pr
od

uc
t

ki
nd

<
of

 [
tk

]
is

 [
pk

]
TR

AN
SA

CT
IO

N
KI

N
D

CO
M

PO
SI

TE
TR

AN
SA

CT
O

R
RO

LE

1.
.1

1.
.* 0.
.*

PR
O

D
U

CT
 K

IN
D

TR
AN

SA
CT

O
R

RO
LE*

0.
.*

<
th

er
e

is
 a

n
ex

ec
ut

or
 li

nk
fr

om
 [

ar
]

to
 [

tk
]1.

.1

M
U

LT
IP

LE
TR

AN
SA

CT
IO

N
KI

N
D [t

k]
 is

 p
ar

t
of

 [
m

tk
]

>

0.
.*

1.
.*

[t
ar

]
is

 p
ar

t
of

 [
ct

ar
]

>

1.
.*

0.
.*

W
O

RK
IN

ST
RU

CT
IO

N

[w
i]

 a
pp

lie
s

to
 [

pk
]

>

1.
.1

AC
TI

O
N

RU
LE

[a
r]

 a
pp

lie
s

to
 [

tk
sk

]

>

0.
.*

G
EN

ER
AL

 S
TE

P
KI

N
D

* RE
VO

KE
PA

TT
ER

N
ST

EP
 K

IN
D

<
th

er
e

is
 a

 r
ev

er
si

on
lin

k
fr

om
 [

rp
sk

]
to

 [
sp

sk
]

ST
AN

D
AR

D
PA

TT
ER

N
ST

EP
 K

IN
Dth

er
e

is
 a

 c
on

di
tio

na
l l

in
k

fr
om

[s
ps

k]
 t

o
[r

ps
k]

> X

0.
.*

0.
.*

TR
AN

SA
CT

IO
N

 K
IN

D
ST

EP
 K

IN
D >

th
er

e
is

 a
 w

ai
t

lin
k

fr
om

 [
tk

sk
]

to
 [

tk
sk

]

0.
.*

P-
FA

CT
 T

YP
E

fa
ct

s
of

 t
yp

e
[p

ft
]

ar
e

us
ed

 in
 p

er
fo

rm
in

g
st

ep
s

of
 k

in
d

[t
ks

k]
>

>
fa

ct
s

of
 t

yp
e

[p
ft

]
ar

e
cr

ea
te

d
in

 p
er

fo
rm

in
g

st
ep

s
of

 k
in

d
[t

ks
k]

th
er

e
is

 a
 r

es
po

ns
e

lin
k

fr
om

 [
tk

sk
]

to
 [

tk
sk

]
>

fa
ct

s
of

 t
yp

e
[p

ft
]

ar
e

co
nt

ai
ne

d
in

tr

an
sa

ct
io

n
ba

nk
 [

tk
]

>

Au
th
or
is
at
io
n

D
el
eg
at
io
n

Ta
bl
e

PE
RF

O
RM

ER

[f
]

ha
s

de
le

ga
te

d
au

th
or

ity

to
 p

er
fo

rm
 [

tk
sk

]
>

[f
]

is
 t

he
 a

ut
ho

ris
ed

pe

rf
or

m
er

 o
f [

tk
sk

]

>

+

<
th

er
e

is
 a

n
ac

ce
ss

 li
nk

fr
om

 [
ar

]
to

 [
tk

]

>
th

er
e

is
 a

 w
ai

t
lin

k
fr

om
 [t

k]
 t

o
[a

r]

37

References
1. Dietz, J.L.G., H.B.F. Mulder, and SpringerLink (Online service), Enterprise Ontology A

Human-Centric Approach to Understanding the Essence of Organisation. 2020, Springer
International Publishing : Imprint: Springer: Cham.

2. Sowa, J.F., Knowledge representation : logical, philosophical, and computational founda-
tions. 2000, Pacific Grove: Brooks/Cole. xiv, 594 p.

3. Dietz, J.L.G., On the nature of business rules, in Advances in Enterprise Engineering I.
2009, Springer: Berlin-Heidelberg.

End notes

 DEMO is extensively discussed in Dietz, J.L.G., Mulder, J.B.F.: Enterprise Ontology - a 1

human-centric approach to understanding the essence of organisation, Springer, 2020, ISBN
978-3-030-38853-9

 https://en.wikipedia.org/wiki/Extended_Backus–Naur_form2

 https://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf3

 https://en.wikipedia.org/wiki/Peano–Russell_notation4

 https://aa.usno.navy.mil/data/docs/JulianDate.php5

 “restriction” originates from the Latin verb “stringere”, meaning trimming, curtailing. The 6

word “interstriction” expresses that actors restrict each others decision freedom or ‘play area’.

https://aa.usno.navy.mil/data/docs/JulianDate.php

	The DEMO Specification Language v4.6.1
	1 Introduction
	2 The basics of DEMOSL
	2.1 Definition of terms
	2.2 Declaration and derivation of types
	2.3 Value types - dimensions, units and sorts
	2.4 Representing time values
	2.5 The four aspect models
	3 The Cooperation Model
	4 The Action Model
	5 The Process Model
	6 The Fact Model
	7 Appendix
	References
	End notes

